
www.manaraa.com

End User Programming for Web Users

Robert C. Miller
MIT Lab for Computer Science

200 Technology Square, Cambridge, MA 02139 USA
rcm@lcs.mit.edu

http://graphics.lcs.mit.edu/~rcm

Introduction

The World Wide Web is increasingly a focus of business
and entertainment. Applications which formerly would have
been designed for the desktop — calendars, travel reserva-
tion systems, purchasing systems, library card catalogs, map
viewers, even games like crossword puzzles and Tetris —
have made the transition to the Web, largely successfully.

Applications have moved to the Web for a number of rea-
sons. First, and probably most important, web applications
need no installation. Just click on a link, and you can use
the application immediately. Bugs can be fixed and new fea-
tures can be rolled out without requiring users to install up-
grades or apply patches. Multiple platforms are also easier to
support. Platform-independent standards, such as XHTML,
DOM, ECMAScript (aka JavaScript), and CSS, make it pos-
sible to target a web application to any standards-compliant
web browser, regardless of operating system or windowing
environment.

The migration of applications to the Web opens up a new
vista of opportunity for end user programming. Applica-
tions that would have been closed and uncustomizable on the
desktop suddenly sprout numerous hooks for customization
when implemented in a web browser. Structured displays are
represented by machine-readable HTML. Commands are in-
voked by generic HTTP requests. Graphical layouts can be
tailored by stylesheet rules.

Unfortunately, although web browsers have a long history
of built-in scripting languages, these languages are not de-
signed for the end user of a web application. Instead, lan-
guages like JavaScript and Curl [8] are aimed at designers of
web applications. Granted, many web designers lack a tradi-
tional programming background, so they may be considered
end users in that respect. But the needs of a designer, build-
ing an application from whole cloth, differ greatly from the
needs of a user looking to tailor or script an existing appli-
cation. Current web scripting languages do not serve those
needs.

In this paper, I consider the problem of end-user automation
of web applications. After covering background and related
work, I will present several motivating examples, and distill
from those examples some essential requirements on a pro-
gramming system for web users. Preliminary steps toward
such a system have been taken, and the resulting research
prototype (LAPIS) will be briefly described. Finally, I will
mention some of the hard problems that arise.

Background

Closed, uncustomizable applications have long been a buga-
boo for end-user scripting on the desktop. Despite the long
existence of scripting frameworks like AppleScript, OLE
Automation, and Visual Basic for Applications, and exhor-
tations by platform vendors to support them, many desktop
applications still do not provide the hooks required for script-
ing. In a software development environment that demands
tight development cycles and short times to market, scripting
and customization get short shrift compared to more press-
ing concerns like feature set, performance, reliability, and
usability.

When a desktop application fails to provide an application
programming interface (API), the end user must resort to
automating the user interface — a technique often called,
somewhat derogatively, screen scraping. Cross-application
macro recorders support this technique by recording the
user’s mouse movements and keystrokes, then playing them
back by inserting simulated mouse and keyboard events in
the system queue. Macro recorders have a serious flaw in
that they can only simulate input; they have no way to read
an application’s display to extract information or condition
their behavior on the application’s state. Triggers [14] and
VisMap [15] address this problem by interpreting the screen
contents at a pixel level, but this approach is challenging to
program and has so far been applied only to simple tasks.

Interpreting desktop application output is hard. Web applica-
tions, however, display their output in structured, machine-
readable HTML, making screen scraping much easier. As a

1



www.manaraa.com

result, web screen scraping abounds. Comparison-shopping
sites, such as Priceline.com, use screen scraping behind the
scenes to extract price information from online retailers. A
Boston Red Sox fan used screen scraping to try to stuff the
ballot box for baseball’s 1999 All-Star Game ballot [2].

The component of a web screen scraper that interprets a web
page and extracts information from it is called a wrapper.
Many wrappers are written by hand in scripting languages
like Perl or Python, but work has also been done on inducing
wrappers from examples [7].

Most web screen scrapers are written in a scripting language
that dwells outside the web browser, like Perl, Python, or
WebL [4]. For an end-user, the distinction is significant.
Cookies, authentication, session identifiers, plugins, user
agents, client-side scripting, and proxies can all conspire to
make the Web look different outside the web browser than
inside. But perhaps the most telling difference, and the most
intimidating one for an end user, is the simple fact that out-
side a web browser, a web page is just raw HTML. Even
the most familiar web portal looks frighteningly complicated
when viewed as HTML source.

Unfortunately, only a handful of systems have looked at
putting end-user web automation into the browser, where it
belongs. LiveAgent [5] is a macro recorder that can record
and play back a sequence of browsing actions, using a local
HTTP proxy to snoop on the user’s actions. SPHINX [10] is
a user-configurable web crawler that runs as a Java applet in
the user’s web browser, so that it would see the same pages
seen by the user. TrIAS [1] constructs wrappers from exam-
ples given in a web browser.

Although JavaScript is primarily intended for site design-
ers, end users can access it with bookmarklets [3]. A book-
marklet is a short piece of JavaScript code encoded as a URL
and stored in a bookmark. When the user clicks on the book-
mark, the JavaScript code runs on the current page. For ex-
ample, here is a simple bookmarklet that changes the current
page’s background to white:

javascript:void(document.bgColor=’white’)

Bookmarklets can extract data from pages, change display
properties, adjust window properties, and visit other sites.
However, a bookmarklet must fit into a URL, strongly con-
straining its length and making it hard to read and modify.

Mozilla has brought some promising developments in
browser-centric web automation [13]. All the “chrome” in
Mozilla — the toolbars, panels, and dialog boxes that sur-
round the browser itself — are specified in XUL, an XML-
based user interface description language. A combination
of XUL, JavaScript, and CSS is used to implement web
screen scrapers directly in the browser. For example, when
a Google search results page is displayed in the browser,
Mozilla automatically parses it to present the results as a list

of hyperlinks in the sidebar. Mozilla promises to be a power-
ful testbed for future research into end-user web automation.

Scenarios

For further motivation, let us consider some scenarios in
which end-users of web applications would want scripting
and customization. These scenarios offer concrete examples
that guide the requirements to be discussed in the next sec-
tion.

Scenario 1: Reviewing. Many conferences — including
CHI — now use a web application to receive papers, dis-
tribute them to peer reviewers, and collect the reviews. A
reviewer assigned 10 papers to read and review faces a lot
of repetitive web browsing to download each paper, print it,
and (later) upload a review for it. Some reviewing applica-
tions require the review to be submitted in a web form, so a
review prepared off-line must be copied and pasted into the
appropriate fields of the form. Tedious repetition is a strong
argument for automation. Unfortunately, since the review-
ing application is protected by authentication, a simple Perl
script won’t do the job.

Scenario 2: House hunting. Prospective home buyers in the
US can use the Multiple Listings Service (MLS) to search
for homes matching various criteria. A number of real es-
tate companies now offer web interfaces that search the MLS
(e.g., www.realtor.com). Interestingly, different MLS search
interfaces provide different subsets of the available informa-
tion, forcing a home buyer to search several sites to get a
more complete picture. Furthermore, many location pref-
erences that may be personally important to a home buyer
cannot be specified in the search. If I buy this house, how
far will I have to commute to my work? How far is the near-
est grocery store, subway stop, or public park? How far is it
from my mother’s house? These questions can be answered
by plugging the house address into an online map site (e.g.,
MapQuest).

Scenario 3: Book shopping. A voracious reader may fre-
quently visit an online bookstore (e.g., Amazon.com) with a
list of books to buy. A voracious reader on a budget, how-
ever, may want to check first whether any of the books are
available in a local public or university library by searching
its online catalog. This is a feature that Amazon is unlikely
ever to offer.

Requirements

The scenarios above suggest a number of desirable criteria
for an end-user web automation system.

2



www.manaraa.com

Browser centricity. In these scenarios, the web browser is
the center of the user’s activity. Tasks interleave manual op-
erations, such as logging in to a site, with automatable opera-
tions, such as downloading papers or searching for books. If
the automation takes the user out of the browser, or digs be-
low the familiar rendered world of the Web into raw HTML,
the user’s work flow is interrupted.

Data-parallel operations. Much of the repetitive activity in
these scenarios revolves around sets of data items: papers
to print, reviews to upload, houses to search, addresses to
map, books to look up. The ability to apply an operation to
multiple items at once would be extremely valuable in web
browsing, just as it is in file managers, word processors, and
drawing editors.

Cross-site scripting. The scenarios often require interacting
with multiple web applications in the same task: e.g., multi-
ple real estate sites, or a real estate site and a mapping site, or
a bookstore and a library catalog. Instead of being confined
to the environment of a single page, as JavaScript typically
is, end-user automation must smoothly interact with multiple
pages, extracting data from one page and using it in another.

Both manual and automatic invocation. Suppose the user
creates a distance-to-work script that takes a house address
as input and uses an online mapping site to compute how far
the user would have to commute to work from that address.
This script might be invoked in several ways. With manual
invocation, the user selects a house (or list of houses) and
triggers the script from a menu or toolbar. Bookmarklets
support only manual invocation. With automatic invocation,
on the other hand, the browser automatically runs the script
on any page recognized as a list of houses. The resulting
distances might be inserted in the house’s description, or they
might be used to filter the list of houses, hiding any that are
farther than a given threshold. Mozilla’s search sidebar uses
automatic invocation; whenever it detects a Google search
results page, it automatically parses the page and displays the
results in the sidebar. Automatic invocation allows custom
behavior to be injected into a web application in ways that
were impossible with desktop applications.

Approach

The LAPIS research project at MIT is working toward this
vision of end-user automation in the web browser. Our
current prototype, LAPIS, is written entirely in Java. The
LAPIS browser can display simple HTML, visit hyperlinks,
and submit web forms, but it fails to support all the stan-
dards (such as cookies, JavaScript, CSS, and SSL) required
by modern web applications. Work is underway to port some
of the novel features of LAPIS into Mozilla, giving a much
richer, standards-compliant testbed for web automation.

LAPIS is described in detail elsewhere [9]. Features that are
most relevant to end user automation are highlighted below:

Pattern library. LAPIS includes an extensible library of
patterns and parsers that can be referred to by simple names,
such as Link, Paragraph, Button, or Table. An HTML parser
is included in the library, naturally, but so are patterns for
other common kinds of text structure, including dates, times,
phone numbers, email addresses, URLs, etc. Wrappers for
web sites, such as Google or Amazon, would naturally fall
into the pattern library. A pattern library raises the abstrac-
tion level of data descriptions, so that when users think about
identifying elements and extracting data from a web page,
they can think in terms of books or addresses rather than
low-level features of HTML. The LAPIS library is designed
to be extended, and is language-independent in the sense that
a library pattern can be implemented by an arbitrary kind of
scanner — regular expression, context-free grammar, parser
generator, neural network, or even a Turing-complete pro-
gram.

Pattern language. Library patterns can be glued together
with a pattern language called text constraints, which uses
relational operators such as before, after, in, and contains to
describe a set of regions in a page. The matches to a pattern
are displayed as multiple selections, and editing commands
can affect all selections at once [12]. LAPIS was designed
with data-parallel operations in mind.

Command language. LAPIS has an embedded scripting
language aimed at the end user, not the page designer. (Tcl
was chosen as the scripting language, partly because of its
syntactic simplicity and partly because a good pure-Java im-
plementation was available. Tcl is also well-suited for in-
teractive command execution.) Commands take patterns as
arguments to indicate how to manipulate a web page. For
example, the keep command extracts a set of regions match-
ing a pattern; delete deletes the regions; sort sorts the re-
gions in-place; and replace replaces each region with some
replacement text, which may be a function of the original re-
gion. Other commands interact with the web page as a user
would: click simulates a click on a hyperlink or form con-
trol matching a pattern, and enter places text in a form field.
JavaScript can also access form controls, of course, but an
important difference is that LAPIS patterns can be written
without looking at the underlying HTML source, e.g.:

click {Link containing “Download this paper”}

click {Checkbox just after “Garage”}

Writing equivalent commands in JavaScript requires digging
into the HTML source to find the names of the fields.

Browser shell. Instead of presenting the Tcl interpreter in
a separate window, LAPIS integrates the interpreter directly
into the browser window. Tcl commands may be typed into
the Location box. The typed command is applied to the

3



www.manaraa.com

current page, and the command’s output is displayed in the
browser as a new page that is added to the browsing history.
A command may also invoke an external program, passing
the current page as standard input and displaying the pro-
gram’s standard output and error streams as a new page. This
“browser shell” interface [11] allows legacy programs and
scripts written in other languages to be integrated seamlessly
into the browser environment.

Challenges

The primary challenge for end-user automation in the web
browser can be simply stated: the user should never have to
view the HTML source of a web site to customize or auto-
mate it. Web sites are becoming increasingly complicated.
Even when a web interaction could be scripted outside the
browser (with no trouble from cookies, authentication, or
dynamically-generated content), the need to examine and un-
derstand the HTML source is a roadblock that discourages
spur-of-the-moment innovation. Web automation must be
done at the level of rendered pages.

This problem is far from trivial. What the user sees as “blue
text” in a rendered page may be blue for many reasons: be-
cause it is a hyperlink; because it is contained in a FONT tag;
because it has a CSS style attribute; because it matched by
a CSS stylesheet rule; or because its color attribute was set
by some JavaScript code. Worst of all, the “blue text” may
be only a picture of text, embedded in a GIF or JPG image!
The text pattern matching approaches used for web screen
scraping outside the browser no longer work in general.

An automation system must deal smoothly with the prolif-
eration of Web standards and syntaxes — XHTML, XML,
CSS, MathML, SVG — while hiding the distinctions be-
tween them from the user. It must be integrated with a
fully standards-compliant web browser, so that the user’s
web applications are functional and usable. Where previous
approaches used a web proxy to extend the browser (e.g.,
LiveAgent), embedding automation into the browser is more
likely to achieve the desired results.

Another challenge facing end-user web automation, like all
web screen scrapers, is dealing with changes in web appli-
cations. One of the benefits of web applications (for their
designers) is that changes can be rolled out without notice to
users, but this turns out to be detrimental to end-user automa-
tion. Some steps toward solving this problem include regres-
sion tests that can detect when a wrapper is going wrong [6]
and intelligent agents that relearn failed wrappers with the
user’s help [1]. Web services with well-specified XML APIs
will also help, although considering how few desktop appli-
cations have scriptable APIs, it is hard to be optimistic about
web applications.

Acknowledgements

This research was sponsored in part by the National Science Foundation,
the Army Research Office, the Defense Advanced Research Project Agency,
and the USENIX Association. The views and conclusions contained herein
are those of the author and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of
any sponsoring party or the U.S. Government.

References
[1] Mathias Bauer, Dietmar Dengler, Gabriele Paul, and Markus Meyer.

Programming by demonstration for information agents. Communica-
tions of the ACM, 43(3):98–103, March 2000.

[2] Gordon Edes. This hack tried but couldn’t connect. Boston Globe,
July 1999.

[3] Steve Kangas. Bookmarklets. http://www.bookmarklets.com/, 1998.

[4] Thomas Kistler and Hannes Marais. WebL – a programming language
for the Web. In Proceedings of the 7th International World Wide Web
Conference (WWW7), 1998.

[5] Bruce Krulwich. Automating the internet: Agents as user surrogates.
IEEE Internet Computing, 1(4):34–38, 1997.

[6] Nicholas Kushmerick. Wrapper verification. World Wide Web,
3(2):79–94, 2000.

[7] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrap-
per induction for information extraction. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 729–
737, 1997.

[8] Friedger Müffke. The Curl programming environment. Dr. Dobb’s
Journal, September 2001.

[9] Robert C. Miller. Lightweight Structure in Text. PhD thesis, Carnegie
Mellon University, May 2002.

[10] Robert C. Miller and Krishna Bharat. SPHINX: a framework for cre-
ating personal, site-specific web crawlers. Computer Networks and
ISDN Systems, 30(1–7):119–130, 1998.

[11] Robert C. Miller and Brad A. Myers. Integrating a command shell
into a web browser. In USENIX 2000 Annual Technical Conference,
pages 171–182, June 2000.

[12] Robert C. Miller and Brad A. Myers. Multiple selections in smart
text editing. In Proceedings of the Sixth International Conference on
Intelligent User Interfaces (IUI 2002), pages 103–110, 2002.

[13] Ian Oeschger, Eric Murphy, Brian King, Pete Collins, and David
Boswell. Creating Applications with Mozilla. O’Reilly, 2002.

[14] Richard Potter. Triggers: Guiding automation with pixels to achieve
data access. In Allen Cypher, editor, Watch What I Do: Programming
by Demonstration, pages 360–380. MIT Press, 1993.

[15] Luke Zettlemoyer and Robert St. Amant. A visual medium for pro-
grammatic control of interactive applications. In Proceedings of ACM
Conference on Human Factors in Computer Systems (CHI ’99), pages
199–206, 1999.

4


